Development Considerations for Distributed Generation and Microgrids

Marc Lopata, PE

President

Azimuth Energy

Free Island Energy

Agenda

• Market snapshot

at ILLINOIS INSTITUTE OF TECHNOLOGY

- Development feasibility of RE & EE
- Phased approach to microgrid implementation

Azimuth Energy

- Solar Energy Development & Installation
- Microgrid Engineering & Construction
- Energy & Efficiency Services
- Project goals: Safety, Performance, Aesthetics

Renewables development 600+ projects, over 120 MW US, Caribbean, Africa/Indian Ocean markets LEED & Energy Star projects from 10,000 sf to 9,000,000 sq.ft. 30+ million kWh/year in energy reduction

Growth of conventional PV systems

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Growth of microgrids

Microgrid Revenue by Region, Average Scenario, World Markets: 2011-2017

(Source: Pike Research)

• Installed cost reduction of PV systems

at ILLINOIS INSTITUTE OF TECHNOLOGY

Labor cost, equipment cost, soft cost

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
 - Chemical Storage: Lead Acid to Li-Ion, Aqueous Ion, Flow
 - Potential Storage: Capacitors, Compressed Gas, Flywheels
 - Microgrid Controllers & Inverters
 - Attraction of investors and major manufacturers

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
- Third-party financing
 - Power Purchase Agreements (PPAs)
 - Operating Leases
 - Diesel Reduction Agreements (DRAs)
 - Key is full utilization "take-or-pay" provisions

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
- Third-party financing
- Streamlined permitting, utility acceptance, policy & incentives
 - Steps: interconnect > backfeed the grid > net billing > net metering > FiT
 - Chicago Self-Certification, Easy PV Permit, and E-Plan
 - Rebates and credits: <u>www.dsireusa.org</u>
 - Value Trading Proposition

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
- Third-party financing
- Streamlined permitting, utility acceptance, policy & incentives
- Marketing & cultural demand
 - Environmental stewardship
 - Attracting and retaining talent
 - Supply-chain pressure

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
- Third-party financing
- Streamlined permitting, utility acceptance, policy & incentives
- Marketing & cultural demand
- Risk management

- Installed cost reduction of PV systems
- Technological advances performance, capabilities, benefits and cost
- Third-party financing
- Streamlined permitting, utility acceptance, policy & incentives
- Marketing & cultural demand
- Risk management

About 2,010 results (0.17 seconds)

US Imposes Steep Tariffs on Importers of **Chinese Solar P**... New York Times - Jun 3, 2014 U.S. Imposes Steep Tariffs on Importers of **Chinese Solar Panels** ... **New** duties will range from 18.56 to 35.21 percent. ... The decision, in a long-simmering **trade dispute**, addresses one of the main charges in a ... out of **time**," Rhone Resch, chief executive of the **Solar Energy** Industries Association, the main ...

US to levy fresh tariffs of up to 35% on Chinese solar panels

Dual-Purpose Solar

P

Development Feasibility of Renewable Energy and Energy Efficiency (EERE)

Identify Resources / Sources

- ✓ Solar (PV and/or ST)
- ✓ Wind
- 🗸 Tidal
- ✓ Wave
- ✓ Run of river
- ✓ OTEC
- ✓ Geothermal
- ✓ Pumped storage
- ✓ Ground source heat pumping
- ✓ Fuel cells (fuel source)

Characteristics

- ✓ First Capital Cost
- ✓ 0&M
- ✓ Reliability
- ✓ Survivability
- ✓ Base load
- ✓ Dispatchable
- ✓ Visual impact
- ✓ Sound/noise
- ✓ Technical support
- ✓ Environmental impact

Development Feasibility of Renewable Energy and Energy Efficiency

- LCOE from Renewable Energy ~ \$0.15 to \$0.25/kWh
- Energy Efficiency highest returns < 50% reduction

Development Feasibility of Renewable Energy and Energy Efficiency

Best mix based on:

- Cost of power and energy, EE & RE options available
- How much storage (hours/days of autonomy)
- Construction cost

System design

Sunlight

Unknowns:

- How much EE reduction possible
 - Equipment tuning
 - Operational changes
 - Low-cost measures
 - Capital upgrades
- Construction risk (and cost)
- How much RE investment
 - What will EE provide?

100% offset PV array

- Area under the curve
- More power than useable
- No sun, no energy

100% offset PV array with storage

- Area under curves still the same
- Storage required, but how much?
- Wasted investment possible

PHASE 1: Max PV deployment without batteries or storage

- Genset always on, fuel reduction
- Frequency & voltage stability
- Build out of key distribution
- Proof of concept
- Team vetting

PHASE 2: More PV, small battery plant

- Shoulder load on batteries
- Genset off period
- Size based on step functions
- Significant reduction in fuel usage

PHASE 3: Total storage autonomy

- Elimination of fossil fuels for normal operations
- Lowest OpEx
- Lowest provisioning cost and risk
 - Removal of unknowns during earlier phases
 - Opportunity to employ efficiency during phasing
 - Better understanding of loads and needs

Marc Lopata, PE

314.378.1913 Marc@AzimuthEnergy.net

